Recap: Conditional Frequencies

General Formula:

Alternative calculation methods for the conditional probability:

Calculation Rules

The calculation rules for probabilities carry over to conditional probabilities

Rule 1: Conditional probabilities are numbers between 0 and 1
  • \(0 \le P(A|B) \le 1 \: \: \: \forall A,B \subseteq \Omega \text{ with } P(B) > 0\)
Rule 2: The impossible event \(\varnothing\) has conditional probability \(0\)
  • \(P(\varnothing|B) = 0 \:\:\: \forall B \subseteq |Omega \text{ with } P(B) > 0\)
Rule 3: If \(A \subseteq C\) holds, then event \(C\) has at least the same conditional probability as event \(A\)
  • \(\text{For all } B \subseteq \Omega \text{ with } P(B) > 0 \text{ it holds that } P(A|B) \le P(C|B) \text{ if }A \subseteq C\)
Rule 4: Calculation fo the conditional probability of the complementary event
  • \(P(\bar{A}|B) = 1 - P(A|B) \text{ for all } B \subseteq \Omega \text{ with } P(B) > 0\)
Rule 5: Addition rule (to calculate the conditional probability of the union)
  • \(P(A \cup C|B) = P(A|B) + P(C|B) - P(A \cap C | B) \text{ for all } B \subseteq |Omega \text{ with } P(B) > 0\)

Rule 6: Product Rule

  • \(P(A \cap B) = P(A|B) \cdot P(B) \: \: \: \forall A,B, \subseteq \Omega\) with \(P(B) > 0\)

Rule 7: Law of total probability

  • If \(\Omega = B_{1} \dot{\cup}B_2\dot{\cup}\dots \dot{\cup} B_k\) is a partition of the sample space into disjoint events, then for e very event \(A \subseteq \Omega\):
    • \(P(A) = \sum_{i = 1}^{k} P(A|B_i) \cdot P(B_i)\)

Independence

Two events A and B are stochastically independent, if P(A and B) = P(A) * P(B)

Back to Table of Contents

LS0tDQp0aXRsZTogIkNvbmRpdGlvbmFsIFByb2JhYmlsaXRpZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpSZWNhcDogW0NvbmRpdGlvbmFsIEZyZXF1ZW5jaWVzXShodHRwczovL2xlb25pZXBvcGtlbi5naXRodWIuaW8vU0JBL25vdGVib29rcy9jb25kaXRpb25hbEZyZXF1ZW5jaWVzLm5iLmh0bWwpDQoNCi0gV2hlbiBjb25zaWRlcmluZyBjb25kaXRpb25hbCBmcmVxdWVuY2llcywgKmFkZGl0aW9uYWwgaW5mb3JtYXRpb24qIGNhbiBjaGFuZ2UgdGhlICoqcmVsYXRpdmUgZnJlcXVlbmNpZXMqKg0KICAtIFNvIGNhbiB0aGUgcHJvYmFiaWxpdGllcyBmb3IgdGhlIG9jY3VycmVuY2Ugb2YgZXZlbnRzIGNoYW5nZSwgd2hlbiBhZGRpdGlvbmFsIGluZm9ybWF0aW9uIGlzIHJlY2VpdmVkLiAkXHJpZ2h0YXJyb3ckICoqQ29uZGl0aW9uYWwgcHJvYmFiaWxpdGllcyoqDQoNCiMjIyMgR2VuZXJhbCBGb3JtdWxhOg0KLSBJZiAkQiBcc3Vic2V0ZXEgXE9tZWdhJCBpcyBhbiBldmVudCB3aXRoICRQKEIgPiAwJCwgdGhlbiB0aGUgY29uZGl0aW9uYWwgcHJvYmFiaWxpdHkgb2YgdGhlIGV2ZW50ICRBIFxzdWJzZXRlcSBcT21lZ2EkIGdpdmVuICh0aGUgY29uZGl0aW9uKSBCIGlzIGdpdmVuIGJ5Og0KICBcW1AoQXxCKSA9IFxmcmFje3xBIFxjYXAgQnx9e3xCfH1cXQ0KICANCioqQWx0ZXJuYXRpdmUqKiBjYWxjdWxhdGlvbiBtZXRob2RzIGZvciB0aGUgY29uZGl0aW9uYWwgcHJvYmFiaWxpdHk6DQoNCi0gJFAoQikgPSBcZnJhY3t8Qnx9e3xcT21lZ2F8fSBccmlnaHRhcnJvdyB8QnwgPSBQKEIpIFxjZG90IHxcT21lZ2F8JA0KLSAkUChBfEIpID0gXGZyYWN7fEEgXGNhcCBCfH17fEJ8fSAgXHJpZ2h0YXJyb3cgfEEgXGNhcCBCfCA9ICBQKEEgXGNhcCBCKSBcY2RvdCB8T21lZ2F8JA0KDQojIyMgQ2FsY3VsYXRpb24gUnVsZXMNCg0KPiBUaGUgWypjYWxjdWxhdGlvbiBydWxlcyogZm9yIHByb2JhYmlsaXRpZXNdKGh0dHBzOi8vbGVvbmllcG9wa2VuLmdpdGh1Yi5pby9TQkEvbm90ZWJvb2tzL0NvbmRpdGlvbmFsLVByb2JhYmlsaXR5LVJVbGVzLm5iLmh0bWwpIGNhcnJ5IG92ZXIgdG8gY29uZGl0aW9uYWwgcHJvYmFiaWxpdGllcw0KDQojIyMjIyBSdWxlIDE6IENvbmRpdGlvbmFsIHByb2JhYmlsaXRpZXMgYXJlIG51bWJlcnMgYmV0d2VlbiAwIGFuZCAxDQoNCi0gJDAgXGxlIFAoQXxCKSBcbGUgMSBcOiBcOiBcOiBcZm9yYWxsIEEsQiBcc3Vic2V0ZXEgXE9tZWdhIFx0ZXh0eyB3aXRoIH0gUChCKSA+IDAkDQoNCiMjIyMjIFJ1bGUgMjogVGhlIGltcG9zc2libGUgZXZlbnQgJFx2YXJub3RoaW5nJCBoYXMgY29uZGl0aW9uYWwgcHJvYmFiaWxpdHkgJDAkDQoNCi0gJFAoXHZhcm5vdGhpbmd8QikgPSAgMCBcOlw6XDogXGZvcmFsbCBCIFxzdWJzZXRlcSB8T21lZ2EgXHRleHR7IHdpdGggfSBQKEIpID4gMCQNCg0KIyMjIyMgUnVsZSAzOiBJZiAkQSBcc3Vic2V0ZXEgQyQgaG9sZHMsIHRoZW4gZXZlbnQgJEMkIGhhcyBhdCBsZWFzdCB0aGUgc2FtZSBjb25kaXRpb25hbCBwcm9iYWJpbGl0eSBhcyBldmVudCAkQSQNCg0KLSAkXHRleHR7Rm9yIGFsbCB9IEIgXHN1YnNldGVxIFxPbWVnYSBcdGV4dHsgd2l0aCB9IFAoQikgPiAwIFx0ZXh0eyBpdCBob2xkcyB0aGF0IH0gUChBfEIpIFxsZSBQKEN8QikgXHRleHR7IGlmIH1BIFxzdWJzZXRlcSBDJA0KDQojIyMjIyBSdWxlIDQ6IENhbGN1bGF0aW9uIGZvIHRoZSBjb25kaXRpb25hbCBwcm9iYWJpbGl0eSBvZiB0aGUgY29tcGxlbWVudGFyeSBldmVudA0KDQotICRQKFxiYXJ7QX18QikgPSAxIC0gUChBfEIpIFx0ZXh0eyBmb3IgYWxsIH0gQiBcc3Vic2V0ZXEgXE9tZWdhIFx0ZXh0eyB3aXRoIH0gUChCKSA+IDAkDQoNCiMjIyMjIFJ1bGUgNTogQWRkaXRpb24gcnVsZSAodG8gY2FsY3VsYXRlIHRoZSBjb25kaXRpb25hbCBwcm9iYWJpbGl0eSBvZiB0aGUgdW5pb24pDQoNCi0gJFAoQSBcY3VwIEN8QikgPSBQKEF8QikgKyBQKEN8QikgLSBQKEEgXGNhcCBDIHwgQikgXHRleHR7IGZvciBhbGwgfSBCIFxzdWJzZXRlcSB8T21lZ2EgXHRleHR7IHdpdGggfSBQKEIpID4gMCQNCg0KDQotLS0NCg0KIyMjIyBSdWxlIDY6IFByb2R1Y3QgUnVsZQ0KDQotICRQKEEgXGNhcCBCKSA9IFAoQXxCKSBcY2RvdCBQKEIpIFw6IFw6IFw6IFxmb3JhbGwgQSxCLCBcc3Vic2V0ZXEgXE9tZWdhJCB3aXRoICRQKEIpID4gMCQNCg0KIyMjIyBSdWxlIDc6IExhdyBvZiB0b3RhbCBwcm9iYWJpbGl0eQ0KDQotIElmICRcT21lZ2EgPSBCX3sxfSBcZG90e1xjdXB9Ql8yXGRvdHtcY3VwfVxkb3RzIFxkb3R7XGN1cH0gQl9rJCBpcyBhICpwYXJ0aXRpb24gb2YgdGhlIHNhbXBsZSBzcGFjZSBpbnRvIGRpc2pvaW50IGV2ZW50cyosIHRoZW4gZm9yIGUgdmVyeSBldmVudCAkQSBcc3Vic2V0ZXEgXE9tZWdhJDoNCiAgLSAkUChBKSA9IFxzdW1fe2kgPSAxfV57a30gUChBfEJfaSkgXGNkb3QgUChCX2kpJA0KICANCi0tLQ0KDQojIyMgSW5kZXBlbmRlbmNlDQpUd28gZXZlbnRzIEEgYW5kIEIgYXJlIHN0b2NoYXN0aWNhbGx5IGluZGVwZW5kZW50LCBpZiBQKEEgYW5kIEIpID0gUChBKSAqIFAoQikNCg0KW0JhY2sgdG8gVGFibGUgb2YgQ29udGVudHNdKC4uLyk=