Maximum Likelihood method

\[L(\theta) = f(x_1, \dots, x_n|\theta) = f(x_1|\theta)\dots f(x_n|\theta) = \prod_{i = 1}^{n} f(x_i|\theta)\]

Here \(f(x_1|\theta)\) denotes the value of the probability density f at \(x_i\) under the assumption that the underlying true parameter value is \(\theta\).

To find the ML-estimator we need to derive the likelihood function after \(\theta\) and set to null.


ML-estimator for a exponential distribution where \(\lambda\) is searched

\(f(x|\lambda) = \prod_{i = 1}^{n} \lambda e ^{-\lambda x_i} = \lambda^n e^{-\lambda \sum x_i}\)
\(n - \lambda \sum_{i=1}^{n}x_i= 0\)
\(\lambda = \frac{1}{\overline{x}}\)


Likelihood for a binomial distribution where \(\pi\) is searched

\(L(\pi) = \pi^x(1-\pi)^{n-x}\)


Log-Likelihood method

\[ln L(\theta) = ln(f(x_1, \dots, x_n|\theta)) = \sum_{i = 1}^{n} ln f(x_i|\theta)\]

Back to Table of Contents

LS0tDQp0aXRsZTogIkNvbnN0cnVjdGlvbiBvZiBlc3RpbWF0aW9uIGZ1bmN0aW9ucyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyMgTWF4aW11bSBMaWtlbGlob29kIG1ldGhvZA0KLSB3ZSBlc3RpbWF0ZSAgYW4gdW5rbm93biBwYXJhbWV0ZXIgJFx0aGV0YSQNCi0gdGhlIHZhbHVlIG9mIHRoZSBsaWtlbGlob29kIGZ1bmN0aW9uIEwgZm9yIGdpdmVuIHJlYWxpemF0aW9ucyAkeF8xLCBcZG90cywgeF9uJCBvZiB0aGUgc2FtcGxlIHZhcmlhYmxlcyBpcyBkZXRlcm1pbmVkIGJ5DQoNCiQkTChcdGhldGEpID0gZih4XzEsIFxkb3RzLCB4X258XHRoZXRhKSA9IGYoeF8xfFx0aGV0YSlcZG90cyBmKHhfbnxcdGhldGEpID0gXHByb2Rfe2kgPSAxfV57bn0gZih4X2l8XHRoZXRhKSQkDQoNCkhlcmUgJGYoeF8xfFx0aGV0YSkkIGRlbm90ZXMgdGhlIHZhbHVlIG9mIHRoZSBwcm9iYWJpbGl0eSBkZW5zaXR5IGYgYXQgJHhfaSQgdW5kZXIgdGhlIGFzc3VtcHRpb24gdGhhdCB0aGUgdW5kZXJseWluZyB0cnVlIHBhcmFtZXRlciB2YWx1ZSBpcyAkXHRoZXRhJC4NCg0KVG8gZmluZCB0aGUgTUwtZXN0aW1hdG9yIHdlIG5lZWQgdG8gZGVyaXZlIHRoZSBsaWtlbGlob29kIGZ1bmN0aW9uIGFmdGVyICRcdGhldGEkIGFuZCBzZXQgdG8gbnVsbC4NCjxicj4NCjxicj4NCg0KLS0tDQoNCiMjIyMjIE1MLWVzdGltYXRvciBmb3IgYSBbZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uXSguL2V4cG9uZW50aWFsRGlzdHJpYnV0aW9uLm5iLmh0bWwpIHdoZXJlICRcbGFtYmRhJCBpcyBzZWFyY2hlZA0KJGYoeHxcbGFtYmRhKSA9IFxwcm9kX3tpID0gMX1ee259IFxsYW1iZGEgZSBeey1cbGFtYmRhIHhfaX0gPSBcbGFtYmRhXm4gZV57LVxsYW1iZGEgXHN1bSB4X2l9JDxicj4NCiRuIC0gXGxhbWJkYSBcc3VtX3tpPTF9XntufXhfaT0gMCQgPGJyPg0KJFxsYW1iZGEgPSBcZnJhY3sxfXtcb3ZlcmxpbmV7eH19JA0KDQotLS0NCg0KIyMjIyMgTGlrZWxpaG9vZCBmb3IgYSBbYmlub21pYWwgZGlzdHJpYnV0aW9uXSguL2Jpbm9taW5hbF9EaXN0cmkubmIuaHRtbCkgd2hlcmUgJFxwaSQgaXMgc2VhcmNoZWQNCiRMKFxwaSkgPSBccGleeCgxLVxwaSlee24teH0kDQoNCi0tLQ0KDQojIyMjIExvZy1MaWtlbGlob29kIG1ldGhvZA0KLSB3ZSBlc3RpbWF0ZSAgYW4gdW5rbm93biBwYXJhbWV0ZXIgJFx0aGV0YSQNCi0gdGhlIHZhbHVlIG9mIHRoZSBsb2ctbGlrZWxpaG9vZCBmdW5jdGlvbiBMIGZvciBnaXZlbiByZWFsaXphdGlvbnMgJHhfMSwgXGRvdHMsIHhfbiQgb2YgdGhlIHNhbXBsZSB2YXJpYWJsZXMgaXMgZGV0ZXJtaW5lZCBieQ0KDQokJGxuIEwoXHRoZXRhKSA9IGxuKGYoeF8xLCBcZG90cywgeF9ufFx0aGV0YSkpID0gXHN1bV97aSA9IDF9XntufSBsbiBmKHhfaXxcdGhldGEpJCQNCg0KW0JhY2sgdG8gVGFibGUgb2YgQ29udGVudHNdKC4uLykNCg==