\[F(x) = P(X \le x) = \sum\limits_{i:x_i \le x} f(x_i) = \sum\limits_{i:x_i \le x} p_i\]

and \(P(X \ge x) = 1 - P(X \le x) = 1 - F(x)\)

Properties


For a continuos variable with density f

\[F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) \; dx\]


For continous uniform distribution

\[F(x) = \int_{- \infty}^{x} f(t) \; dt = \begin{cases} 0 ,& x < a\\ \frac{x - a}{b - a} ,& a \le x \le b \\ 1 ,& x > b \end{cases} \]


For the exponential distribution

\[F(x) = \begin{cases} 1- e^{-\lambda x} ,& x \ge 0\\ 0 ,& x < 0 \end{cases} \]


For the poisson distribution

(according to https://de.wikipedia.org/wiki/Poisson-Verteilung#Verteilungsfunktion) \[F(x) = e^{-\lambda}\sum_{k = 0}^{n}\frac{\lambda ^x}{x!}\]

some calculation hints

Probabilities can be calculated via the distribution function as follows:
- \(P(X > x) = 1 - P(X \le x) = 1 - F(x)\)
- \(P(x < X \le y) = F(y) - F(x)\)
- \(P(x < X < y) = P(X \le y) - P(X \le x) = F(y) - F(x)\)
- \(P(x \le X \le y | X \le z) = \frac{P(x \le X \le y, X \le z)}{P(X \le z)} = \frac {P(x \le X \le z)}{P(X \le z)} = \frac{F(z) - F(x)}{F(z)}\)
- \(P(X \le x) = F(x)\)
- \(P(X \ge x) = 1 - F(x)\)

Back to Table of Contents

LS0tDQp0aXRsZTogIkRpc3RyaWJ1dGlvbiBGdW5jdGlvbiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCi0gSWYgdGhlIGRpc2NyZXRlIHJhbmRvbSB2YXJpYWJsZSBYIGlzIGF0IGxlYXN0IG9yZGluYWxseSBzY2FsZWQsIHdlIGNhbiBkZWZpbmUgdGhlIGRpc3RyaWJ1dGlvbiBmdW5jdGlvbiBvZiBYIHNpbWlsYXJseSB0byB0aGUgZW1waXJpY2FsIGRpc3RyaWJ1dGlvbiBmdW5jdGlvbiBvZiBhIGZlYXR1cmUvY2hhcmFjdGVyaXN0aWMNCi0gRm9yIHRoaXMsIHdlIGFzc3VtZSB0aGF0IHRoZSB2YWx1ZXMgJHhfMSwgeF8yLCAuLi4gLCB4X2ssIC4uLiQgaW4gdGhlIHN1cHBvcnQgb2YgWCBhcmUgYWxyZWFkeSBzb3J0ZWQgaW4gYXNjZW5kaW5nDQpvcmRlciAoaS5lLiAkeF8xIDwgeF8yIDwgLi4uIDwgeF9rIDwgLi4uJCkNCg0KJCRGKHgpID0gUChYIFxsZSB4KSA9IFxzdW1cbGltaXRzX3tpOnhfaSBcbGUgeH0gZih4X2kpID0gXHN1bVxsaW1pdHNfe2k6eF9pIFxsZSB4fSBwX2kkJA0KDQphbmQgJFAoWCBcZ2UgeCkgPSAxIC0gUChYIFxsZSB4KSA9IDEgLSBGKHgpJA0KDQotIEYoeCkgY29ycmVzcG9uZHMgZXhhY3RseSB0byB0aGUgcHJvYmFiaWxpdHkgdGhhdCB0aGUgdmFsdWUgb2YgdGhlIHJhbmRvbSB2YXJpYWJsZSBYIGlzIGF0IG1vc3QgeC4NCg0KIyMjIyBQcm9wZXJ0aWVzDQotIFRoZSBmdW5jdGlvbiBGIGlzIGEgbW9ub3RvbmljYWxseSBpbmNyZWFzaW5nIHN0ZXAgZnVuY3Rpb24NCi0gSnVtcCBvZiBoZWlnaHQgJHBfaSA9IGYoeF9pKSQgYXQgJHhfaSQNCi0gQXQganVtcCBwb2ludHMsIHRoZSB1cHBlciB2YWx1ZSAoInN0YWlyIGVkZ2UiKSBpcyB0aGUgY29ycmVzcG9uZGluZyBmdW5jdGlvbiB2YWx1ZQ0KLSBGKHgpID0gMCBmb3IgYWxsICR4IDwgeF8xJA0KDQotLS0NCg0KIyMjIyBGb3IgYSBjb250aW51b3MgdmFyaWFibGUgd2l0aCBkZW5zaXR5IGYNCiQkRih4KSA9IFAoWCBcbGUgeCkgPSBcaW50X3stXGluZnR5fV57eH0gZih4KSBcOyBkeCQkDQoNCi0tLQ0KDQojIyMjIEZvciBbY29udGlub3VzIHVuaWZvcm0gZGlzdHJpYnV0aW9uXSguL3VuaWZvcm1EaXN0cmlidXRpb24ubmIuaHRtbCkNCg0KJCRGKHgpID0gXGludF97LSBcaW5mdHl9Xnt4fSBmKHQpIFw7IGR0ID0gXGJlZ2lue2Nhc2VzfQ0KMCAsJiB4IDwgYVxcDQpcZnJhY3t4IC0gYX17YiAtIGF9ICwmIGEgXGxlIHggXGxlIGIgXFwNCjEgLCYgeCA+IGINClxlbmR7Y2FzZXN9ICQkDQoNCi0tLQ0KDQojIyMjIEZvciB0aGUgW2V4cG9uZW50aWFsIGRpc3RyaWJ1dGlvbl0oLi9leHBvbmVudGlhbERpc3RyaWJ1dGlvbi5uYi5odG1sKQ0KJCRGKHgpID0gXGJlZ2lue2Nhc2VzfQ0KMS0gZV57LVxsYW1iZGEgeH0gLCYgeCBcZ2UgMFxcDQowICAsJiB4IDwgMA0KXGVuZHtjYXNlc30gJCQNCg0KLS0tDQoNCiMjIyMgRm9yIHRoZSBbcG9pc3NvbiBkaXN0cmlidXRpb25dKC4vcG9pc3NvbkRpc3RyaS5uYi5odG1sKQ0KKGFjY29yZGluZyB0byBodHRwczovL2RlLndpa2lwZWRpYS5vcmcvd2lraS9Qb2lzc29uLVZlcnRlaWx1bmcjVmVydGVpbHVuZ3NmdW5rdGlvbikNCiQkRih4KSA9IGVeey1cbGFtYmRhfVxzdW1fe2sgPSAwfV57bn1cZnJhY3tcbGFtYmRhIF54fXt4IX0kJA0KLS0tDQoNCiMjIyMgc29tZSBjYWxjdWxhdGlvbiBoaW50cw0KUHJvYmFiaWxpdGllcyBjYW4gYmUgY2FsY3VsYXRlZCB2aWEgdGhlIGRpc3RyaWJ1dGlvbiBmdW5jdGlvbiBhcyBmb2xsb3dzOiA8YnI+DQogICAgLSAkUChYID4geCkgPSAxIC0gUChYIFxsZSB4KSA9IDEgLSBGKHgpJCA8YnI+DQogICAgLSAkUCh4IDwgWCBcbGUgeSkgPSBGKHkpIC0gRih4KSQgPGJyPg0KICAgIC0gJFAoeCA8IFggPCB5KSA9IFAoWCBcbGUgeSkgLSBQKFggXGxlIHgpID0gRih5KSAtIEYoeCkkIDxicj4NCiAgICAtICRQKHggXGxlIFggXGxlIHkgfCBYIFxsZSB6KSA9IFxmcmFje1AoeCBcbGUgWCBcbGUgeSwgWCBcbGUgeil9e1AoWCBcbGUgeil9ID0gXGZyYWMge1AoeCBcbGUgWCBcbGUgeil9e1AoWCBcbGUgeil9ID0gXGZyYWN7Rih6KSAtIEYoeCl9e0Yoeil9JCA8YnI+DQogICAgLSAkUChYIFxsZSB4KSA9IEYoeCkkIDxicj4NCiAgICAtICRQKFggXGdlIHgpID0gMSAtIEYoeCkkIDxicj4NCg0KDQpbQmFjayB0byBUYWJsZSBvZiBDb250ZW50c10oLi4vKQ==