A random variable X is called continuous, if there exists an integrable function \(f: R -> R\) with \(f(x) \ge 0\) for all \(x in R\) such that for every interval [a,b]:

\[P(a \le X \le b) = \int_{a}^{b} f(x) \; dx\]

The function f is called the (probability) density of X. The set \(T = {x \in R: f(x) > 0}\) is called the support of X resp. f.

The density is the derivation of the distribution function. So if you want to calculate out of the density you have to build the indefinite integral of f(x)

To be a density function, f(x) has to fulfill the following term: \(\int_{a}^{b} f(x) \; dx = 1\)


For continuous uniform distribution:

\[f(x) = \begin{cases} \frac{1}{b - a} ,& a \le x \le b\\ 0 ,& otherwise \end{cases} \]

For the exponential distribution

\[f(x) = \begin{cases} \lambda e^{-\lambda x} ,& x \ge 0\\ 0 ,& x < 0 \end{cases} \]

For the normal distribution

\[f(x) = \frac{1}{\sqrt(2 \pi o)} exp(- \frac{(x - \mu)^2}{2o^2})\]

specifically for \(\mu = 0\) and \(o^2 = 1\), the density \(\phi\) is: \(\frac{1}{\sqrt(2\pi)} exp(-0.5x^2)\)

Back to Table of Contents

LS0tDQp0aXRsZTogIlRoZSAocHJvYmFiaWxpdHkpIGRlbnNpdHkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpBIHJhbmRvbSB2YXJpYWJsZSBYIGlzIGNhbGxlZCBjb250aW51b3VzLCBpZiB0aGVyZSBleGlzdHMgYW4gaW50ZWdyYWJsZSBmdW5jdGlvbiAkZjogUiAtPiBSJCB3aXRoICRmKHgpIFxnZSAwJCBmb3IgYWxsICR4IGluIFIkIHN1Y2ggdGhhdCBmb3IgZXZlcnkgaW50ZXJ2YWwgW2EsYl06DQoNCiQkUChhIFxsZSBYIFxsZSBiKSA9IFxpbnRfe2F9XntifSBmKHgpIFw7IGR4JCQNCg0KVGhlIGZ1bmN0aW9uIGYgaXMgY2FsbGVkIHRoZSAocHJvYmFiaWxpdHkpIGRlbnNpdHkgb2YgWC4gVGhlIHNldA0KJFQgPSB7eCBcaW4gUjogZih4KSA+IDB9JCBpcyBjYWxsZWQgdGhlIHN1cHBvcnQgb2YgWCByZXNwLiBmLg0KDQpUaGUgZGVuc2l0eSBpcyB0aGUgZGVyaXZhdGlvbiBvZiB0aGUgW2Rpc3RyaWJ1dGlvbiBmdW5jdGlvbl0oLi9kaXN0cmlidXRpb25GdW5jdGlvbi5uYi5odG1sKS4gU28gaWYgeW91IHdhbnQgdG8gY2FsY3VsYXRlIG91dCBvZiB0aGUgZGVuc2l0eSB5b3UgaGF2ZSB0byBidWlsZCB0aGUgaW5kZWZpbml0ZSBpbnRlZ3JhbCBvZiBmKHgpDQoNClRvIGJlIGEgZGVuc2l0eSBmdW5jdGlvbiwgZih4KSBoYXMgdG8gZnVsZmlsbCB0aGUgZm9sbG93aW5nIHRlcm06ICRcaW50X3thfV57Yn0gZih4KSBcOyBkeCA9IDEkDQoNCi0tLQ0KDQojIyMjIEZvciBbY29udGludW91cyB1bmlmb3JtIGRpc3RyaWJ1dGlvbl0oLi91bmlmb3JtRGlzdHJpYnV0aW9uKToNCg0KJCRmKHgpID0gXGJlZ2lue2Nhc2VzfQ0KXGZyYWN7MX17YiAtIGF9DQosJiBhIFxsZSB4IFxsZSBiXFwNCjAgICwmIG90aGVyd2lzZQ0KXGVuZHtjYXNlc30gJCQNCg0KIyMjIyBGb3IgW3RoZSBleHBvbmVudGlhbCBkaXN0cmlidXRpb25dKC4vZXhwb25lbnRpYWxEaXN0cmlidXRpb24ubmIuaHRtbCkNCg0KJCRmKHgpID0gXGJlZ2lue2Nhc2VzfQ0KXGxhbWJkYSBlXnstXGxhbWJkYSB4fSAsJiB4IFxnZSAwXFwNCjAgICwmIHggPCAwDQpcZW5ke2Nhc2VzfSAkJA0KDQojIyMjIEZvciBbdGhlIG5vcm1hbCBkaXN0cmlidXRpb25dKC4vbm9ybWFsRGlzdHJpYnV0aW9uLm5iLmh0bWwpDQokJGYoeCkgPSBcZnJhY3sxfXtcc3FydCgyIFxwaSBvKX0gZXhwKC0gXGZyYWN7KHggLSBcbXUpXjJ9ezJvXjJ9KSQkDQoNCnNwZWNpZmljYWxseSBmb3IgJFxtdSA9IDAkIGFuZCAkb14yID0gMSQsIHRoZSBkZW5zaXR5ICRccGhpJCBpczogJFxmcmFjezF9e1xzcXJ0KDJccGkpfSBleHAoLTAuNXheMikkDQoNCltCYWNrIHRvIFRhYmxlIG9mIENvbnRlbnRzXSguLi8p