The (expected) mean squared error incorporates both bias and variance. The (expected) mean squared error of an estimator \(T = g(X_1, \dots, X_n)\) for the parameter \(\theta\) is given by

\[MSE_\theta(T) = E_\theta([T - \theta]^2)\]

The mean squared error indicates the expected deviation between the estimated T and the true parameter value \(\theta\)


An estimator \(T = g(X_1, \dots, X_n)\) for the parameter \(\theta\) is called consistent (in mean square), if

\[MSE_\theta(T) = Var_\theta(T) + Bias_\theta(T)^2 -> 0 for n -> \infty\]

Back to Table of Contents

LS0tDQp0aXRsZTogIk1lYW4gc3F1YXJlZCBlcnJvciBhbmQgY29uc2lzdGVuY3kiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGUgKioqKGV4cGVjdGVkKSBtZWFuIHNxdWFyZWQgZXJyb3IqKiogaW5jb3Jwb3JhdGVzIGJvdGggYmlhcyBhbmQgdmFyaWFuY2UuIFRoZSAoZXhwZWN0ZWQpIG1lYW4gc3F1YXJlZCBlcnJvciBvZiBhbiBbZXN0aW1hdG9yXSguL3BvaW50X2VzdGltYXRpb24ubmIuaHRtbCkgJFQgPSBnKFhfMSwgXGRvdHMsIFhfbikkIGZvciB0aGUgcGFyYW1ldGVyICRcdGhldGEkIGlzIGdpdmVuIGJ5DQoNCiQkTVNFX1x0aGV0YShUKSA9IEVfXHRoZXRhKFtUIC0gXHRoZXRhXV4yKSQkDQoNClRoZSBtZWFuIHNxdWFyZWQgZXJyb3IgaW5kaWNhdGVzIHRoZSBleHBlY3RlZCBkZXZpYXRpb24gYmV0d2VlbiB0aGUgZXN0aW1hdGVkIFQgYW5kIHRoZSB0cnVlIHBhcmFtZXRlciB2YWx1ZSAkXHRoZXRhJA0KDQotICRNU0VfXHRoZXRhKFQpID0gVmFyX1x0aGV0YShUKSArIEJpYXNfXHRoZXRhKFQpXjINCi0gaWYgVCBpcyBbdW5iaWFzZWRdKC4vdW5iaWFzZWRfZXN0aW1hdG9yLm5iLmh0bWwpIHRoZW4gJE1TRV9cdGhldGEoVCkgPSBWYXJfXHRoZXRhKFQpJA0KDQotLS0tDQoNCkFuIFtlc3RpbWF0b3JdKC4vcG9pbnRfZXN0aW1hdGlvbi5uYi5odG1sKSAkVCA9IGcoWF8xLCBcZG90cywgWF9uKSQgZm9yIHRoZSBwYXJhbWV0ZXIgJFx0aGV0YSQgaXMgY2FsbGVkICoqKmNvbnNpc3RlbnQqKiogKGluIG1lYW4gc3F1YXJlKSwgaWYNCg0KJCRNU0VfXHRoZXRhKFQpID0gVmFyX1x0aGV0YShUKSArIEJpYXNfXHRoZXRhKFQpXjIgLT4gMCBmb3IgbiAtPiBcaW5mdHkkJA0KDQoNCltCYWNrIHRvIFRhYmxlIG9mIENvbnRlbnRzXSguLi8p