We want to estimate an unknown parameter \(\theta\) of the distribution of a characteristic/variable in a population
- To do this: draw random sample of size 𝒏𝒏 from the population
- We assume that \(X_1, \dots, X_n\) are independent replications of the following random variable: X = β€žValue of the characteristic in a randomly selected statistical entity of the population.β€œ


Now we want to infer the unknown parameter \(\theta\) of the distribution of X
This is done by estimators or estimation statistics:
- estimation function or estimation statistic for the parameter \(\theta\) is a function \(T = g(X_1, \dots, X_n)\)
- the estimator is the numerical value \(t = g(x_1, \dots, x_n)\) resulting from the realizations \(x_1, \dots, x_n\)
- the value of \(T = g(X_1, \dots, X_n)\) is again a random variable


Estimators for the expected value \(\mu\) = E(X)

This estimator is unbiased and consistent.


Estimators for the variance \(o^2 = Var(X)\)


Estimators for the parameter \(\pi\) (probability of occurrence) of a Bernoulli distribution

Back to Table of Contents

LS0tDQp0aXRsZTogIlBvaW50IGVzdGltYXRpb24iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpXZSB3YW50IHRvIGVzdGltYXRlIGFuIHVua25vd24gcGFyYW1ldGVyICRcdGhldGEkIG9mIHRoZSBkaXN0cmlidXRpb24gb2YgYSBjaGFyYWN0ZXJpc3RpYy92YXJpYWJsZSBpbiBhIHBvcHVsYXRpb24gPGJyPg0KLSBUbyBkbyB0aGlzOiBkcmF3IHJhbmRvbSBzYW1wbGUgb2Ygc2l6ZSDwnZKP8J2SjyBmcm9tIHRoZSBwb3B1bGF0aW9uIDxicj4NCi0gV2UgYXNzdW1lIHRoYXQgJFhfMSwgXGRvdHMsIFhfbiQgYXJlICoqKmluZGVwZW5kZW50KioqIHJlcGxpY2F0aW9ucyBvZiB0aGUgZm9sbG93aW5nIHJhbmRvbSB2YXJpYWJsZTogWCA9IOKAnlZhbHVlIG9mIHRoZSBjaGFyYWN0ZXJpc3RpYyBpbiBhIHJhbmRvbWx5IHNlbGVjdGVkIHN0YXRpc3RpY2FsIGVudGl0eSBvZiB0aGUgcG9wdWxhdGlvbi7igJwgPGJyPg0KPGJyPjxicj4NCk5vdyB3ZSB3YW50IHRvIGluZmVyIHRoZSB1bmtub3duIHBhcmFtZXRlciAkXHRoZXRhJCBvZiB0aGUgZGlzdHJpYnV0aW9uIG9mIFggPGJyPg0KVGhpcyBpcyBkb25lIGJ5ICoqKmVzdGltYXRvcnMqKiogb3IgKioqZXN0aW1hdGlvbiBzdGF0aXN0aWNzKioqOiA8YnI+DQotICoqKmVzdGltYXRpb24gZnVuY3Rpb24qKiogb3IgZXN0aW1hdGlvbiBzdGF0aXN0aWMgZm9yIHRoZSBwYXJhbWV0ZXIgJFx0aGV0YSQgIGlzIGEgZnVuY3Rpb24gJFQgPSBnKFhfMSwgIFxkb3RzLCBYX24pJDxicj4NCi0gdGhlICoqKmVzdGltYXRvcioqKiBpcyB0aGUgbnVtZXJpY2FsIHZhbHVlICR0ID0gZyh4XzEsIFxkb3RzLCB4X24pJCByZXN1bHRpbmcgZnJvbSB0aGUgcmVhbGl6YXRpb25zICR4XzEsIFxkb3RzLCB4X24kPGJyPg0KLSB0aGUgdmFsdWUgb2YgJFQgPSBnKFhfMSwgIFxkb3RzLCBYX24pJCBpcyBhZ2FpbiBhIHJhbmRvbSB2YXJpYWJsZTxicj4NCjxicj4NCg0KLS0tDQoNCiMjIyMgRXN0aW1hdG9ycyBmb3IgdGhlIFtleHBlY3RlZCB2YWx1ZSAkXG11JCA9IEUoWCldKC4vY2VudHJhbF90ZW5kZW5jeS5uYi5odG1sKQ0KLSAkXG92ZXJsaW5le1h9ID0gZyhYXzEsICBcZG90cywgWF9uKSA9IFxmcmFjezF9e259XHN1bV97aSA9IDF9XntufSBYaSQNCi0gdGhlIGVzdGltYXRvciAkXG92ZXJsaW5le3h9ID0gZyh4XzEsICBcZG90cywgeF9uKSA9IFxmcmFjezF9e259XHN1bV97aSA9IDF9XntufSB4aSQgY29ycmVzcG9uZHMgdG8gdGhlIGFyaXRobWV0aWMgbWVhbiBvZiB0aGUgc2FtcGxlIChzYW1wbGUgbWVhbikNCg0KVGhpcyBlc3RpbWF0b3IgaXMgW3VuYmlhc2VkXSguL3VuYmlhc2VkX2VzdGltYXRvci5uYi5odG1sKSBhbmQgW2NvbnNpc3RlbnRdKC4vbWVhbl9zcXVhcmVkX2Vycm9yX2FuZF9jb25zaXN0ZW5jeS5uYi5odG1sKS4NCg0KLS0tDQoNCiMjIyMgRXN0aW1hdG9ycyBmb3IgdGhlIFt2YXJpYW5jZSAkb14yID0gVmFyKFgpJF0oLi9wcm9wX2Rpc3RyaWJ1dGlvbl9tZWFzdXJlcy5uYi5odG1sKQ0KLSBib3RoICRcdGlsZGV7U14yfSA9IGcoWF8xLCAgXGRvdHMsIFhfbikgPSBcZnJhY3sxfXtufVxzdW1fe2kgPSAxfV57bn0oWF9pIC0gXG92ZXJsaW5le1h9KV4yJCBhbmQgJFNeMiA9IGcoWF8xLCAgXGRvdHMsIFhfbikgPSBcZnJhY3sxfXtuIC0gMX1cc3VtX3tpID0gMX1ee259KFhfaSAtIFxvdmVybGluZXtYfSleMiQgYXJlIGVzdGltYXRpb24gZnVuY3Rpb25zIG9mIHRoZSB2YXJpYW5jZS4gPGJyPkZvciB0aGUgZmlyc3QgZXN0aW1hdG9yIHRoZSBbYmlhc10oLi91bmJpYXNlZF9lc3RpbWF0b3IubmIuaHRtbCkgaXMgJC1cZnJhY3sxfXtufW9eMiQuIFRoZSBzZWNvbmQgZXN0aW1hdG9yIGlzIFt1bmJpYXNlZF0oLi91bmJpYXNlZF9lc3RpbWF0b3IubmIuaHRtbCkgYW5kIFtjb25zaXN0ZW50XSguL21lYW5fc3F1YXJlZF9lcnJvcl9hbmRfY29uc2lzdGVuY3kubmIuaHRtbCkuDQoNCi0gdGhlIGVzdGltYXRvcnMgJFx0aWxkZXtzXjJ9ID0gZyh4XzEsICBcZG90cywgeF9uKSA9IFxmcmFjezF9e259XHN1bV97aSA9IDF9XntufSh4X2kgLSBcb3ZlcmxpbmV7eH0pXjIkIGFuZCAkc14yID0gZyh4XzEsICBcZG90cywgeF9uKSA9IFxmcmFjezF9e24gLSAxfVxzdW1fe2kgPSAxfV57bn0oeF9pIC0gXG92ZXJsaW5le3h9KV4yJCBjb3JyZXNwb25kIHRvIHRoZSBlbXBpcmljYWwgdmFyaWFuY2UgYW5kIHRoZSBzYW1wbGUgdmFyaWFuY2UNCg0KLS0tDQoNCiMjIyMgRXN0aW1hdG9ycyBmb3IgdGhlIHBhcmFtZXRlciAkXHBpJCAocHJvYmFiaWxpdHkgb2Ygb2NjdXJyZW5jZSkgb2YgYSBCZXJub3VsbGkgZGlzdHJpYnV0aW9uDQotIGlmIFggaXMgYSBCZXJub3VsbGkgdmFyaWFibGUgdGhlbiAkWF9pIFxpbiB7MCwxfSQgZm9yIGFsbCBpID0gMSwgLi4uLCBhbmQgJFxvdmVybGluZXtYfSA9IGcoWF8xLCAgXGRvdHMsIFhfbikgPSBcZnJhY3sxfXtufVxzdW1fe2kgPSAxfV57bn1YX2kkIGlzIGFuIGVzdGltYXRpb24gZnVuY3Rpb24gZm9yIHRoZSBwcm9iYWJpbGl0eSBvZiBvY2N1cnJlbmNlDQotIHRoZSBlc3RpbWF0b3IgJFxvdmVybGluZXt4fSA9IGcoeF8xLCAgXGRvdHMsIHhfbikgPSBcZnJhY3sxfXtufVxzdW1fe2kgPSAxfV57bn14X2kkIGNvcnJlc3BvbmRzIHRvIHRoZSByZWxhdGl2ZSBmcmVxdWVuY3kgb2YgJHhfaSA9IDEkIGluIHRoZSBzYW1wbGUNCg0KW0JhY2sgdG8gVGFibGUgb2YgQ29udGVudHNdKC4uLyk=