Variance

The variance of a metric discrete random variable X with support \(T = {x_1, x_2, \dots, x_k, \dots}\), probability distribution \(p_1, p_2, \dots, p_k, \dots\) and expected value is given by

\[o^2 = Var(X) = \sum_{i \ge 1} (x_i - \mu)^2p_i\]

The variance corresponds to the expected squared deviation of the random variable X from its expected value
Alternative Formula:

\[o^2 = Var(X) = E(X-\mu)^2\]

The standard deviation is the square root of the variance: \[o = +\sqrt{Var(X)}\]

Estimators: \(\tilde{S^2} = g(X_1, \dots, X_n) = \frac{1}{n}\sum_{i = 1}^{n}(X_i - \overline{X})^2\) and \(S^2 = g(X_1, \dots, X_n) = \frac{1}{n - 1}\sum_{i = 1}^{n}(X_i - \overline{X})^2\)

Confidence interval: \([\overline{X}-t_{1-\alpha/2}(n-1) * \frac{S}{\sqrt{n}}, \overline{X}+t_{1-\alpha/2}(n-1) * \frac{S}{\sqrt{n}}]\)

Frequency interpretation of the variance

  • Var(X) can be interpreted as the average squared deviation from the arithmetic mean that results when we repeat the random process often enough

Properties of the variance

  • Displacement rule: \(Var(X) = E(X^2) - (E(X))^2 = E(X^2) - \mu^2\)
  • For independent metric random variables X and Y: \(Var(X+Y) = Var(X) + Var(Y)\)
  • For independent metric random variables X and Y and arbitrary real numbers \(a_1, \dots, a_n\): \(Var(a_1X_1 + \dots + a_nX_n) = a_1^2Var(X_1) + \dots + a_n^2Var(X_n)\) Back to Table of Contents
LS0tDQp0aXRsZTogIkRpc3RyaWJ1dGlvbiBtZWFzdXJlcyBmb3IgZGlzY3JldGUgcmFuZG9tIHZhcmlhYmxlcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyBWYXJpYW5jZQ0KVGhlIHZhcmlhbmNlIG9mIGEgbWV0cmljIGRpc2NyZXRlIHJhbmRvbSB2YXJpYWJsZSBYIHdpdGggc3VwcG9ydCAkVCA9IHt4XzEsIHhfMiwgXGRvdHMsIHhfaywgXGRvdHN9JCwgcHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9uICRwXzEsIHBfMiwgXGRvdHMsIHBfaywgXGRvdHMkIGFuZCBleHBlY3RlZCB2YWx1ZSBcbXUgaXMgZ2l2ZW4gYnkNCg0KJCRvXjIgPSBWYXIoWCkgPSBcc3VtX3tpIFxnZSAxfSAoeF9pIC0gXG11KV4ycF9pJCQNCg0KVGhlIHZhcmlhbmNlIGNvcnJlc3BvbmRzIHRvIHRoZSBleHBlY3RlZCBzcXVhcmVkIGRldmlhdGlvbiBvZiB0aGUgcmFuZG9tIHZhcmlhYmxlIFgNCmZyb20gaXRzIGV4cGVjdGVkIHZhbHVlIDxicj4NCkFsdGVybmF0aXZlIEZvcm11bGE6DQoNCiQkb14yID0gVmFyKFgpID0gRShYLVxtdSleMiQkDQoNClRoZSBzdGFuZGFyZCBkZXZpYXRpb24gaXMgdGhlIHNxdWFyZSByb290IG9mIHRoZSB2YXJpYW5jZToNCiQkbyA9ICtcc3FydHtWYXIoWCl9JCQNCg0KW0VzdGltYXRvcnNdKC4vcG9pbnRfZXN0aW1hdGlvbi5uYi5odG1sKTogJFx0aWxkZXtTXjJ9ID0gZyhYXzEsICBcZG90cywgWF9uKSA9IFxmcmFjezF9e259XHN1bV97aSA9IDF9XntufShYX2kgLSBcb3ZlcmxpbmV7WH0pXjIkIGFuZCAkU14yID0gZyhYXzEsICBcZG90cywgWF9uKSA9IFxmcmFjezF9e24gLSAxfVxzdW1fe2kgPSAxfV57bn0oWF9pIC0gXG92ZXJsaW5le1h9KV4yJA0KDQpbQ29uZmlkZW5jZSBpbnRlcnZhbF0oLi9pbnRlcnZhbF9lc3RpbWF0aW9uLm5iLmh0bWwpOiAkW1xvdmVybGluZXtYfS10X3sxLVxhbHBoYS8yfShuLTEpICogXGZyYWN7U317XHNxcnR7bn19LCBcb3ZlcmxpbmV7WH0rdF97MS1cYWxwaGEvMn0obi0xKSAqIFxmcmFje1N9e1xzcXJ0e259fV0kDQoNCiMjIyMgRnJlcXVlbmN5IGludGVycHJldGF0aW9uIG9mIHRoZSB2YXJpYW5jZQ0KLSBWYXIoWCkgY2FuIGJlIGludGVycHJldGVkIGFzIHRoZSBhdmVyYWdlIHNxdWFyZWQgZGV2aWF0aW9uIGZyb20gdGhlIGFyaXRobWV0aWMgbWVhbiB0aGF0IHJlc3VsdHMgd2hlbiB3ZSByZXBlYXQgdGhlIHJhbmRvbSBwcm9jZXNzIG9mdGVuIGVub3VnaA0KDQojIyMjIFByb3BlcnRpZXMgb2YgdGhlIHZhcmlhbmNlDQotIERpc3BsYWNlbWVudCBydWxlOiAkVmFyKFgpID0gRShYXjIpIC0gKEUoWCkpXjIgPSBFKFheMikgLSBcbXVeMiQNCi0gRm9yIGluZGVwZW5kZW50IG1ldHJpYyByYW5kb20gdmFyaWFibGVzIFggYW5kIFk6ICRWYXIoWCtZKSA9IFZhcihYKSArIFZhcihZKSQNCi0gRm9yIGluZGVwZW5kZW50IG1ldHJpYyByYW5kb20gdmFyaWFibGVzIFggYW5kIFkgYW5kIGFyYml0cmFyeSByZWFsIG51bWJlcnMgJGFfMSwgXGRvdHMsIGFfbiQ6ICRWYXIoYV8xWF8xICsgXGRvdHMgKyBhX25YX24pID0gYV8xXjJWYXIoWF8xKSArIFxkb3RzICsgYV9uXjJWYXIoWF9uKSQNCltCYWNrIHRvIFRhYmxlIG9mIENvbnRlbnRzXSguLi8p