Idea: Determine an interval depending on the values of the sample variables \(X_1, \dots, X_n\) that contains the true value of the parameter \(\theta\) to be estimated with high probability

For given error probability \(\alpha \in [0,1]\), the functions \(G_u = g_u(X_1, \dots, X_n)\) and \(G_o = g_o(X_1, \dots, X_n)\) of the sample variables give a \((1 - \alpha)\) - confidence interval if: \[P(G_u \ge G_o) = 1\] \[P(G_u \ge \theta \ge G_o) = 1 - \alpha\] \(1 - \alpha\) is also called confidence level


Confidence interval or the expected value

- Case 1: \(o^2\) known; normally distributed

\([\overline{X} - z_{1-\frac{\alpha}{2}}\frac{o}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}}\frac{o}{\sqrt{n}}]\)

- Case 2: \(o^2\) unknown; normally distributed

\([\overline{X} - t_{1-\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}]\) with \(S = \sqrt{\frac{1}{n-1}\sum_{i}(X_i-\overline{X})^2}\)

- Case 3: \(o^2\) known; any distribution (n > 30)

\([\overline{X} - z_{1-\frac{\alpha}{2}}\frac{o}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}}\frac{o}{\sqrt{n}}]\)

- Case 4: \(o^2\) unknown; any distribution (n > 30)

\([\overline{X} - z_{1-\frac{\alpha}{2}}\frac{S}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}}\frac{S}{\sqrt{n}}]\)

Note that the values for \(z_p\) and \(t_p\) are given in a table (see book page 547 ff.)

For the variance \(o^2\); normally distributed

\([\frac{(n-1)S^2}{q_{1-\frac{1-\alpha}{2}}}, \frac{(n-1)S^2}{q_{\frac{\alpha}{2}}}]\)


Width of an Interval

\(B = 2*t_{1-\frac{\alpha}{2}}\frac{o}{\sqrt{n}}\)

LS0tDQp0aXRsZTogIkludGVydmFsIGVzdGltYXRpb24iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpJZGVhOiBEZXRlcm1pbmUgYW4gaW50ZXJ2YWwgZGVwZW5kaW5nIG9uIHRoZSB2YWx1ZXMgb2YgdGhlIHNhbXBsZSB2YXJpYWJsZXMgJFhfMSwgXGRvdHMsIFhfbiQgdGhhdCBjb250YWlucyB0aGUgdHJ1ZSB2YWx1ZSBvZiB0aGUgcGFyYW1ldGVyICRcdGhldGEkIHRvIGJlIGVzdGltYXRlZCB3aXRoIGhpZ2ggcHJvYmFiaWxpdHkNCg0KRm9yIGdpdmVuIGVycm9yIHByb2JhYmlsaXR5ICRcYWxwaGEgXGluIFswLDFdJCwgdGhlIGZ1bmN0aW9ucyAkR191ID0gZ191KFhfMSwgXGRvdHMsIFhfbikkIGFuZCAkR19vID0gZ19vKFhfMSwgXGRvdHMsIFhfbikkIG9mIHRoZSBzYW1wbGUgdmFyaWFibGVzIGdpdmUgYSAkKDEgLSBcYWxwaGEpJCAtIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaWY6DQokJFAoR191IFxnZSBHX28pID0gMSQkDQokJFAoR191IFxnZSBcdGhldGEgXGdlIEdfbykgPSAxIC0gXGFscGhhJCQNCiQxIC0gXGFscGhhJCBpcyBhbHNvIGNhbGxlZCBjb25maWRlbmNlIGxldmVsDQoNCi0tLQ0KDQojIyMjIENvbmZpZGVuY2UgaW50ZXJ2YWwgb3IgdGhlIFtleHBlY3RlZCB2YWx1ZV0oLi9jZW50cmFsX3RlbmRlbmN5Lm5iLmh0bWwpDQoNCiMjIyMjIC0gQ2FzZSAxOiAkb14yJCBrbm93bjsgW25vcm1hbGx5IGRpc3RyaWJ1dGVkXSguL25vcm1hbERpc3RyaWJ1dGlvbi5uYi5odG1sKQ0KDQokW1xvdmVybGluZXtYfSAtIHpfezEtXGZyYWN7XGFscGhhfXsyfX1cZnJhY3tvfXtcc3FydHtufX0sIFxvdmVybGluZXtYfSArIHpfezEtXGZyYWN7XGFscGhhfXsyfX1cZnJhY3tvfXtcc3FydHtufX1dJA0KDQojIyMjIyAtIENhc2UgMjogJG9eMiQgdW5rbm93bjsgW25vcm1hbGx5IGRpc3RyaWJ1dGVkXSguL25vcm1hbERpc3RyaWJ1dGlvbi5uYi5odG1sKQ0KDQokW1xvdmVybGluZXtYfSAtIHRfezEtXGZyYWN7XGFscGhhfXsyfX0obi0xKVxmcmFje1N9e1xzcXJ0e259fSwgXG92ZXJsaW5le1h9ICsgdF97MS1cZnJhY3tcYWxwaGF9ezJ9fShuLTEpXGZyYWN7U317XHNxcnR7bn19XSQgd2l0aCAkUyA9IFxzcXJ0e1xmcmFjezF9e24tMX1cc3VtX3tpfShYX2ktXG92ZXJsaW5le1h9KV4yfSQNCg0KIyMjIyMgLSBDYXNlIDM6ICRvXjIkIGtub3duOyBhbnkgZGlzdHJpYnV0aW9uIChuID4gMzApDQoNCiRbXG92ZXJsaW5le1h9IC0gel97MS1cZnJhY3tcYWxwaGF9ezJ9fVxmcmFje299e1xzcXJ0e259fSwgXG92ZXJsaW5le1h9ICsgel97MS1cZnJhY3tcYWxwaGF9ezJ9fVxmcmFje299e1xzcXJ0e259fV0kDQoNCiMjIyMjIC0gQ2FzZSA0OiAkb14yJCB1bmtub3duOyBhbnkgZGlzdHJpYnV0aW9uIChuID4gMzApDQoNCiRbXG92ZXJsaW5le1h9IC0gel97MS1cZnJhY3tcYWxwaGF9ezJ9fVxmcmFje1N9e1xzcXJ0e259fSwgXG92ZXJsaW5le1h9ICsgel97MS1cZnJhY3tcYWxwaGF9ezJ9fVxmcmFje1N9e1xzcXJ0e259fV0kDQoNCioqKk5vdGUgdGhhdCB0aGUgdmFsdWVzIGZvciAkel9wJCBhbmQgJHRfcCQgYXJlIGdpdmVuIGluIGEgdGFibGUgKHNlZSBib29rIHBhZ2UgNTQ3IGZmLikqKioNCg0KIyMjIyBGb3IgdGhlIFt2YXJpYW5jZSAkb14yJF0oLi9wcm9wX2Rpc3RyaWJ1dGlvbl9tZWFzdXJlcy5uYi5odG1sKTsgW25vcm1hbGx5IGRpc3RyaWJ1dGVkXSguL25vcm1hbERpc3RyaWJ1dGlvbi5uYi5odG1sKQ0KDQokW1xmcmFjeyhuLTEpU14yfXtxX3sxLVxmcmFjezEtXGFscGhhfXsyfX19LCBcZnJhY3sobi0xKVNeMn17cV97XGZyYWN7XGFscGhhfXsyfX19XSQNCg0KLS0tDQoNCiMjIyMgV2lkdGggb2YgYW4gSW50ZXJ2YWwNCg0KJEIgPSAyKnRfezEtXGZyYWN7XGFscGhhfXsyfX1cZnJhY3tvfXtcc3FydHtufX0k