Mode

A value x with the highest probability \(f(x) = P(X = x)\) is called mode of the random variable X (resp. its distribution)


Quantiles and median

Let 0 < p < 1. Every value \(\tilde{x_p}\) for which the random variable X - takes on a value less or equal \(\tilde{x_p}\) with probability of at least p an - takes on a value greater or equal \(\tilde{x_p}\) with probability of at least 1 - p
is called p-quantile of the random variable X
For p = 0.5 the 50%-quantile \(\tilde{x_p} = \tilde{x_0.5}\) is called the median

Concrete calculation

To get the median for a continuous random variable with given density function f(x) you are searching for a \(m\), so that \(\int_{-\infty}^{m} f(x) \; dx = 0.5\)


Expected value

The expected value is the most important location measure for metric discrete random variables

\[\mu = E(x) = x_1p_1 + ... + x_kp_k + ... = \sum\limits_{i \ge 1} x_ip_i\]

Estimators: \(\overline{X} = g(x_1, \dots, x_n) = \frac{1}{n}\sum_{i = 1}^{n} xi\)
\(1-\alpha\)-confidence of a \(N(\mu, o^2)\)-distribution for known \(o^2\): \([\overline{X}-Z_{1-\alpha/2} * \frac{o}{\sqrt{n}}, \overline{X}+Z_{1-\alpha/2} * \frac{o}{\sqrt{n}}]\)

Interpretation of the expected value

Matching the analogy of expected value and arithmetic mean, we can observe the following frequency interpretation of the expected value:
Let the random trial underlying the metric random variable X be performed n-times independently, observing the n realizations \(\hat{x_1},...,\hat{x_n}\) of X. Then for large 𝑛𝑛, the arithmetic mean \(\overline{x}\) of \(\hat{x_1},...,\hat{x_n}\) is close to \(\mu = E(X)\) with high probability.

E(X) can be interpreted as the value that results on average if we repeat the random process often enough

Properties of the expected value

Back to Table of Contents

LS0tDQp0aXRsZTogIkNlbnRyYWwgdGVuZGVuY3kgbWVhc3VyZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyMjIE1vZGUNCkEgdmFsdWUgeCB3aXRoIHRoZSBoaWdoZXN0IHByb2JhYmlsaXR5ICRmKHgpID0gUChYID0geCkkIGlzIGNhbGxlZCBtb2RlIG9mIHRoZSByYW5kb20gdmFyaWFibGUgWCAocmVzcC4gaXRzIGRpc3RyaWJ1dGlvbikNCg0KLS0tDQoNCiMjIyMgUXVhbnRpbGVzIGFuZCBtZWRpYW4NCkxldCAwIDwgcCA8IDEuIEV2ZXJ5IHZhbHVlICRcdGlsZGV7eF9wfSQgZm9yIHdoaWNoIHRoZSByYW5kb20gdmFyaWFibGUgWA0KLSB0YWtlcyBvbiBhIHZhbHVlIGxlc3Mgb3IgZXF1YWwgJFx0aWxkZXt4X3B9JCB3aXRoIHByb2JhYmlsaXR5IG9mIGF0IGxlYXN0IHAgYW4NCi0gdGFrZXMgb24gYSB2YWx1ZSBncmVhdGVyIG9yIGVxdWFsICRcdGlsZGV7eF9wfSQgd2l0aCBwcm9iYWJpbGl0eSBvZiBhdCBsZWFzdCAxIC0gcCA8YnI+DQppcyBjYWxsZWQgKioqcC1xdWFudGlsZSoqKiBvZiB0aGUgcmFuZG9tIHZhcmlhYmxlIFggPGJyPg0KRm9yIHAgPSAwLjUgdGhlIDUwJS1xdWFudGlsZSAkXHRpbGRle3hfcH0gPSBcdGlsZGV7eF8wLjV9JCBpcyBjYWxsZWQgdGhlIG1lZGlhbg0KDQojIyMjIyBDb25jcmV0ZSBjYWxjdWxhdGlvbg0KVG8gZ2V0IHRoZSBtZWRpYW4gZm9yIGEgY29udGludW91cyByYW5kb20gdmFyaWFibGUgd2l0aCBnaXZlbiBkZW5zaXR5IGZ1bmN0aW9uIGYoeCkgeW91IGFyZSBzZWFyY2hpbmcgZm9yIGEgJG0kLCBzbyB0aGF0ICRcaW50X3stXGluZnR5fV57bX0gZih4KSBcOyBkeCA9IDAuNSQNCg0KLS0tDQoNCiMjIyMgRXhwZWN0ZWQgdmFsdWUNClRoZSAqKipleHBlY3RlZCB2YWx1ZSoqKiBpcyB0aGUgbW9zdCBpbXBvcnRhbnQgbG9jYXRpb24gbWVhc3VyZSBmb3IgKioqbWV0cmljKioqIGRpc2NyZXRlIHJhbmRvbSB2YXJpYWJsZXMNCg0KJCRcbXUgPSBFKHgpID0geF8xcF8xICsgLi4uICsgeF9rcF9rICsgLi4uID0gXHN1bVxsaW1pdHNfe2kgXGdlIDF9IHhfaXBfaSQkDQoNCltFc3RpbWF0b3JzXSguL3BvaW50X2VzdGltYXRpb24ubmIuaHRtbCk6ICRcb3ZlcmxpbmV7WH0gPSBnKHhfMSwgIFxkb3RzLCB4X24pID0gXGZyYWN7MX17bn1cc3VtX3tpID0gMX1ee259IHhpJCA8YnI+DQpbJDEtXGFscGhhJC1jb25maWRlbmNlXSguL2ludGVydmFsX2VzdGltYXRpb24ubmIuaHRtbCkgb2YgYSBbJE4oXG11LCBvXjIpJC1kaXN0cmlidXRpb25dKC4vbm9ybWFsRGlzdHJpYnV0aW9uLm5iLmh0bWwpIGZvciBrbm93biAkb14yJDogJFtcb3ZlcmxpbmV7WH0tWl97MS1cYWxwaGEvMn0gKiBcZnJhY3tvfXtcc3FydHtufX0sIFxvdmVybGluZXtYfStaX3sxLVxhbHBoYS8yfSAqIFxmcmFje299e1xzcXJ0e259fV0kDQoNCiMjIyMgSW50ZXJwcmV0YXRpb24gb2YgdGhlIGV4cGVjdGVkIHZhbHVlDQpNYXRjaGluZyB0aGUgYW5hbG9neSBvZiBleHBlY3RlZCB2YWx1ZSBhbmQgW2FyaXRobWV0aWMgbWVhbl0oLi9jZW50cmFsdGVuZGVuY3ltZWFzdXJlLm5iLmh0bWwpLCB3ZSBjYW4gb2JzZXJ2ZSB0aGUgZm9sbG93aW5nIGZyZXF1ZW5jeSBpbnRlcnByZXRhdGlvbiBvZiB0aGUgZXhwZWN0ZWQgdmFsdWU6IDxicj4NCkxldCB0aGUgcmFuZG9tIHRyaWFsIHVuZGVybHlpbmcgdGhlIG1ldHJpYyByYW5kb20gdmFyaWFibGUgWCBiZSBwZXJmb3JtZWQgbi10aW1lcyBpbmRlcGVuZGVudGx5LCBvYnNlcnZpbmcgdGhlIG4gcmVhbGl6YXRpb25zICRcaGF0e3hfMX0sLi4uLFxoYXR7eF9ufSQgb2YgWC4NClRoZW4gZm9yIGxhcmdlIPCdkZvwnZGbLCB0aGUgYXJpdGhtZXRpYyBtZWFuICRcb3ZlcmxpbmV7eH0kIG9mICRcaGF0e3hfMX0sLi4uLFxoYXR7eF9ufSQgaXMgY2xvc2UgdG8gJFxtdSA9IEUoWCkkIHdpdGggaGlnaCBwcm9iYWJpbGl0eS4NCg0KRShYKSBjYW4gYmUgaW50ZXJwcmV0ZWQgYXMgdGhlIHZhbHVlIHRoYXQgcmVzdWx0cyBvbiBhdmVyYWdlDQppZiB3ZSByZXBlYXQgdGhlIHJhbmRvbSBwcm9jZXNzIG9mdGVuIGVub3VnaA0KDQojIyMjIFByb3BlcnRpZXMgb2YgdGhlIGV4cGVjdGVkIHZhbHVlDQotICRFKFgrWSkgPSBFKFgpICsgRShZKSQNCi0gJEUoYV8xWF8xICsgLi4uICsgYV9uWF9uID0gYV8xRShYXzEpICsgLi4uICsgYV9uRShYX24pJA0KLSBGb3IgaW5kZXBlbmRlbnQgbWV0cmljIHJhbmRvbSB2YXJpYWJsZXMgWCBhbmQgWSBpdCBob2xkcyB0aGF0ICRFKFggKiBZKSA9IEUoWCkgKiBFKFkpJA0KDQpbQmFjayB0byBUYWJsZSBvZiBDb250ZW50c10oLi4vKQ==